科技改变生活 · 科技引领未来
1,单数双数、100以内的单数有:
1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77、79、81、83、85、87、89、91、93、95、97、99。

2、1到100的双数有:
2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、78、80、82、84、86、88、90、92、94、96、98、100。
关于奇数和偶数,有下面的性质:
(1)两个连续整数中必有一个奇数和一个偶数;
(2)奇数+奇数=偶数;偶数+奇数=奇数;偶数+偶数+...+偶数=偶数;
(3)奇数-奇数=偶数;偶数-奇数=奇数;奇数-偶数=奇数;
(4)若a、b为整数,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数;
(5)n个奇数的乘积是奇数,n个偶数的乘积是偶数;算式中有一个是偶数,则乘积是偶数;
(6)奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8;
(7)奇数的平方除以2、4、8余1;
(8) 任意两个奇数的平方差是2、4、8的倍数;
(9)奇数除以2余数为1。
它还是保持增函数的单调性。
下面是一些关于单调性、奇偶性在加减乘除四则运算组合后变化的记忆口诀:
增乘增为增,减乘减为增,减乘增为减,减加减为减,增加增为增,增加减不一定,
奇加奇为奇,偶加偶为偶,奇加偶不一定,奇复合奇为偶,偶复合偶为偶,奇复合偶为奇.
增减无复合方面的性质,奇偶无乘除的性质.
如果想方便记忆,就举两个很熟悉的例子。比如f(x):y=x是增,g(x):y=-x是减,然后f(x)乘g(x)为x的平方,是条抛物线,就增减不一定啦.
解析:求两个数相加的和的奇偶性,就要看这两个数是否都是偶数或者都是奇数,如果是两个数的奇偶性相同则这个数的和都是偶数,如果有奇数个奇数,则它们的和是奇数,有偶数个奇数,则它们的和是偶数。规律如下:
奇数+奇数=偶数
奇数+偶数=奇数
偶数+偶数=偶数
偶数+奇数=奇数
这是三角函数章节中关于诱导公式的判断口诀,非常实用。不过作者的口诀第一个字写错了,是奇偶的奇,不是乘积的积。
要知道口诀的意思,先把常用的六个三角函数名称,分为三组。正弦和余弦一组,正切和余切一组,正割和余割一组。两句口诀都在同组三角函数名称之间转化。
第一句,奇变偶不变,这里的变与不变是三角函数名称,比如正弦变余弦,正切变余切等。奇偶是指弧度制下的角α通过kπ/2的和变化成新的角α+kπ/2,其中k的奇偶性就是口诀中的奇偶。当k为奇数的时候,函数名称变化成同组的另一个。
第二句,符号看象限,是判断所求的函数值在新的角中符号的变化。不论给定初始α是第几象限角,都可以看成第一象限锐角,判断出新的角α+kπ/2属于第几象限,在所求函数名称下是什么符号,如果是负号,前面加负号,如果是正号,前面不变。
例如,已知sinα=-3/5,求cos(α+3π/2),3是奇数,变名称,变化后是正弦。第四象限,余弦符号是正号。故cos(α+3π/2)=sinα=-3/5。
三角函数诱导公式
三角函数诱导公式(Inductionformula)是一种数学公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。包括一些常用的公式和和差化积公式。(全国高考大纲中只考sin, cos, tan)
中文名
诱导公式
外文名
Induction formula
应用学科
数学
适用领域范围
数学、物理、天文
常用公式
公式一

设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα(k∈Z)
公式二
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)= tanα
cot(π+α)=cotα
公式三
任意角α与-α的三角函数值之间的关系(利用原函数奇偶性):
sin(-α)=-sinα
cos(-α)= cosα
tan(-α)=-tanα
cot (—α) =—cotα
公式四
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)= cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六
π/2±α 及3π/2±α与α的三角函数值之间的关系:(⒈~⒋)
⒈π/2+α与α的三角函数值之间的关系
弧度制下的角的表示:
sin(π/2+α)=cosα.
cos(π/2+α)=—sinα.
tan(π/2+α)=-cotα.
cot(π/2+α)=-tanα.
sec(π/2+α)=-cscα.
csc(π/2+α)=secα.
角度制下的角的表示:
sin(90°+α)=cosα.
cos(90°+α)=-sinα.
tan(90°+α)=-cotα.
cot(90°+α)=-tanα.
sec(90°+α)=-cscα.
csc(90°+α)=secα.
⒉ π/2-α与α的三角函数值之间的关系
弧度制下的角的表示:
sin(π/2-α)=cosα.
cos(π/2-α)=sinα.
tan(π/2-α)=cotα.
cot(π/2-α)=tanα.
sec(π/2-α)=cscα.
csc(π/2-α)=secα.
角度制下的角的表示:
sin (90°-α)=cosα.
cos (90°-α)=sinα.
tan (90°-α)=cotα.
cot (90°-α)=tanα.
sec (90°-α)=cscα.
csc (90°-α)=secα.
⒊ 3π/2+α与α的三角函数值之间的关系
弧度制下的角的表示:
sin(3π/2+α)=-cosα.
cos(3π/2+α)=sinα.
tan(3π/2+α)=-cotα.
cot(3π/2+α)=-tanα.
sec(3π/2+α)=cscα.
csc(3π/2+α)=-secα.
角度制下的角的表示:
sin(270°+α)=-cosα.
cos(270°+α)=sinα.
tan(270°+α)=-cotα.
cot(270°+α)=-tanα.
sec(270°+α)=cscα.
csc(270°+α)=-secα.
⒋ 3π/2-α与α的三角函数值之间的关系
弧度制下的角的表示:
sin(3π/2-α)=-cosα.
cos(3π/2-α)=-sinα.
tan(3π/2-α)=cotα.
cot(3π/2-α)=tanα.
sec(3π/2-α)=-cscα.
csc(3π/2-α)=-secα.
角度制下的角的表示:
sin(270°-α)=-cosα.
cos(270°-α)=-sinα.
tan(270°-α)=cotα.
cot(270°-α)=tanα.
sec(270°-α)=-cscα.
csc(270°-α)=-secα.
推算公式
3π/2 ± α与α的三角函数值之间的关系:
sin(3π/2+α)=-cosα
sin(3π/2-α)=-cosα
cos(3π/2+α)=sinα
cos(3π/2-α)=-sinα
tan(3π/2+α)=-cotα
tan(3π/2-α)=cotα
cot(3π/2+α)=-tanα
cot(3π/2-α)=tanα
诱导公式记忆口诀:“奇变偶不变,符号看象限”。
“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间上小于零,所以右边符号为负,所以右边为-sinα。
符号判断口诀:
全,S,T,C,正。这五个字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。
也可以这样理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是对应象限三角函数为正值的名称。口诀中未提及的都是负值。
“ASTC”反Z。意即为“all(全部)”、“sin”、“tan”、“cos”按照将字母Z反过来写所占的象限对应的三角函数为正值。
另一种口诀:正弦一二切一三,余弦一四紧相连,言之为正。
推导过程
万能公式推导
,
(因为)
再把分式上下同除,可得
然后用代替即可。
同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
robots