科技改变生活 · 科技引领未来
其实仍然是指数函数的求导,仍然安转指数函数的求导法则,多少次方是倍数,指数项减一
指数函数只是简单函数,f(x)=2∧x 中的X仅为自然数,而像2的-8次幂,2的7/3次幂,2的根号2次幂等属于复合函数,比指数函数复杂多了。你学了高数之后就发现推导这东西都是一些怪兽做的,理不理解不是很重要啦。到时自然会明白哦,希望对你有帮助。
指数函数的求导公式:(a^x)'=(lna)(a^x)部分导数公式:1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x;y'=a^xlna;y=e^x y'=e^x4.y=logax y'=logae/x;y=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2扩展资料求导证明:y=a^x两边同时取对数,得:lny=xlna两边同时对x求导数,得:y'/y=lna所以y'=ylna=a^xlna,得证注意事项1.不是所有的函数都可以求导;2.可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。
幂指函数的求导方法,即求y=f(x)^g(x)类型函数的导数。
1、x^y=y^x方程类型 主要步骤是,通过公式a^b=e^(blna)变形后再对方程两边同时求导。
2、z^x=y^z方程类型 主要步骤是,通过公式a^b=e^(blna)变形后再对方程两边同时对x求导,把y看做成常数。
3、y=x^(1/y)类型 主要步骤是方程两边取对数后,再对方程两边求导得到。
导数的基本公式:常数函数的导数公式(C)'=0
幂函数 (X^α)'=αX^(α-1)
(1/X)'=-1/X^2
(X^1/2)'=1/[2X^(1/2)]
指数函数 (a^x)'=a^x㏑a
(e^x)'=e^x
对数函数(loga^x)'=1/(xlna) (a>0 且a≠1)
(lnX)'=1/x
三角函数 正弦(sinx)'=cosx
余弦 (cosx)'=-sinx
正切(tanx)'=(secx)^2
余切(cotx)'=-(cscx)^2
正割(secx)'=secxtanx
余割(cscx)'=-csccotx
反三角函数 反正弦 (arcsinx)'=1/[ (1-X^2)^1/2]
反余弦 (arccosx)'=- 1/[ (1-X^2)^1/2]
反正切 (arctanx)'=1 / (1+X^2)
反余切 (arccotx)'=-1 / (1+X^2)
robots