科技改变生活 · 科技引领未来
按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:
(1)求f''(x);
(2)令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;
(3)对于(2)中求出的每一个实根或二阶导数不存在的点x0,检查f''(x)在x0左右两侧邻近的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。
为正确理解拐点的定义,可以参考以下例题。
拐点
拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。
已知函数的拐点为斜率最大的点,而斜率的表示为一阶导数,最大值为二阶导数等于0的点。
y=-x^3+3x-2
y'=-3x^2+3
由一阶导数可以推出,当x=0时,斜率最大为3,即x=0为拐点,代入方程得:
y=-(0)^3+3×0-2=-2,即拐点坐标为(0,-2)
已可以求二阶导数:
y"=-6x
令y"=0→-6x=0→x=0,
代入原方程解得:y=-2。
即拐点为(0,-2)
判断方法:(1)求这个函数的二阶导数;(2)若二阶导数在这个点的左边和右边的正负性不同,则这个点就是拐点;若在这个点的左边和右边的正负性相同,则这个点就不是拐点。
拐点的必要条件
设f(x)在(a,b)内二阶可导,x0∈(a,b),若(x0,f(x0))是曲线y=f(x)的一个拐点,则f‘’(x0)=0。
拐点的充分条件
设f(x)在(a,b)内二阶可导,x0∈(a,b),则f‘’(x0)=0,若在x0两侧附近f‘’(x0)异号,则点(x0,f(x0))为曲线的拐点。否则(即f‘’(x0)保持同号,(x0,f(x0))不是拐点。
当函数图像上的某点使函数的二阶导数为零,且三阶导数不为零时,这点即为函数的拐点。
若函数y=f(x)在c点可导,且在点c一侧是凸,另一侧是凹,则称c是函数y=f(x)的拐点。另外,如果c是拐点,必然有f''(c)=0或者f''(c)不存在;反之则不成立;比如,f(x)=x^4,有f''(0)=0,但是0两侧全是凸,所以0不是函数f(x)=x^4的拐点。
函数的拐点是事物发展过程中运行趋势或运行速率的变化,也就是指凸曲线与凹曲线的连接点,当函数图像上的某点使函数的二阶导数为零,且三阶导数不为零时,这点即为函数的拐点。
函数在数学上的定义:给定一个非空的数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A),那么这个关系式就叫函数关系式,简称函数。
若函数y=f(x)在c点可导,且在点c一侧是凸,另一侧是凹,则称c是函数y=f(x)的拐点。我们可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点: (1)求f''(x); (2)令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点; (3)对于(2)中求出的每一个实根或二阶导数不存在的点x0,检查f''(x)在x0左右两侧邻近的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。
robots